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Effect of Orbital Drift and Sensor Changes on the
Time Series of AVHRR Vegetation Index Data

Robert K. Kaufmann, Liming Zhou, Yuri Knyazikhin, Nikolay V. Shabanov, Ranga B. Myneni, and
Compton J. Tucker

Abstract—This paper assesses the effect of changes in solainterannual variations in global vegetation dynamics. Analysis
zenith angle (SZA) and sensor changes on reflectances in channelf the Pathfinder NDVI data indicates increased photosynthetic
1, channel 2, and normalized difference vegetation index (NDVI) g civity of terrestrial vegetation from 1981 to 1991 in a manner
from the advanced very high resolution radiometer (AVHRR) ti f . in plant wth iated with
Pathfinder land data set for the period July 1981 through .SUQQES |v.e o an |ncrease In pan. gro 'aSSOCIae with an
September 1994. First, the effect of changes in SZA on channelincrease in the duration of the active growing season [2]. The
reflectances and NDVI is derived from equations of radiative region of greatest increase lies betweePM&nd 70N, where
transfer in vegetation media. Starting from first principles, it marked warming has occurred in the spring time due to an early
is rigorously shown that the NDVI of a vegetated surface is a gisappnearance of snow [3]. The satellite data are consistent with
function of the maximum positive eigenvalue of the radiative - . litude of th | le of at heri
transfer equation within the framework of the theory used and an increase _'n ampli u' € of the seasona ’cyc € of atmosp er.'c
its assumptions. A sensitivity analysis of this relation indicates CO2 exceeding 20% since the early 1970’s and an advance in
that NDVI is minimally sensitive to SZA changes, and this the timing of the drawdown of COin spring and early summer
sensitivity decreases as leaf area increases. Second, statisticahf up to seven days [4].
methods are used to analyze the relationship between SZA and  conclysions about interannual variability and the biotic ef-
channel reflectances or NDVI. It is shown that the use of ordinary t of climate ch based itical tion: that
least squares can generate spurious regressions because of thgec of cimate change are :';lse onacri |ca' assumption: tha
nonstationary property of time series. To avoid such a confusion, the data collected by AVHRR’s are not contaminated by changes
we use the notion of cointegration to analyze the relation between in measurement error over time. If measurement error changes
SZA and AVHRR data. Results are consistent with the conclusion gver time, the time series collected by the sensor will contain a
of theoretical analysis from equations of radiative transfer. NDVI deterministic or stochastic trend when none may exist. To avoid

is not related to SZA in a statistically significant manner except fusing th trends with trend ted by ch int
for biomes with relatively low leaf area. From the theoretical and coniusing these trends with trends generated by changes In ter-

empirical analysis, we conclude that the NDVI data generated estrial biota, it is important to identify such errors and cor-
from the AVHRR Pathfinder land data set are not contaminated rect for their effects before analyzing the data. In the case of
by trends introduced from changes in solar zenith angle due to the Pathfinder data set, both sensor calibration and illumination
orbital decay and changes in satellites (NOAA-7, 9, 11). As such, yajations contribute to measurement error change over time,
the NDVI data can be used to analyze interannual variability of L s "
global vegetation activity. and the effect of c_h_apgmg illumination, howgver,.car) m|t|g§te
or enhance the artificial trends caused by calibration instability.
The calibration issue has been addressed in numerous scientific
studies, but the illumination issue has not. The illumination ef-
fect is a combination of the effects of absorption and scattering
I. INTRODUCTION in the atmosphere and surface anisotropy [5]. In general, proper-
data set of normalized difference vegetation index (N DVf.es of both surface and atmosphere vary during the year, which
kes the problem even more complex [5]. Quantitative charac-

at 8-km resolution (square pixels) has been produced’ - ) ;
with data from the advanced very high resolution radiomé@r'sncs of atmospheric constituents (aerosol and water vapor)

ters (AVHRR) onboard the afternoon-viewing NOAA seriegnd of the gurface are onI_y now becoming ava_ilable on a global
satellites (NOAA-7, 9, and 11) under the joint sponsorship ale. As discussed by angmaal.[e], Cf‘af‘ge.s n SZA. can_af—
NASA and NOAA Earth Observing System (EOS) Pathfind pct reflectances by modifying the radiation interactions in the

Project [1]. The data processing includes improved navigatidﬂ,edia' (h:hangej in the o;r)]tical i(ép[t)h o:f aeros;i)l particlesa.in thle
intersatellite calibration, and partial correction for Rayleig Oposphere an strato;p ere ( ) affect reflectances directly
N changing the reflectivity of the atmosphere [7].

scattering. The data are currently available for the peri

July 1981 to September 1994 and have been used to stut#ﬁ this paper, we assess the effect of changes in solar zenith
angle on reflectances in channel 1, channel 2, and NDVI from

the AVHRR Pathfinder land data set assembled from NOAA-7,
Manuscript received July 27, 1999; revised March 16, 2000. This work w8 and 11 sensors (the effect of stratospheric aerosol optical

supported by NOAA grant NA76G90481 and NASA Earth Science Enterpri ; ; ;
R. K. Kaufmann, L. Zhou, Y. Knyazikhin, N. V. Shabanov, and R. B. Myner?aepth IS explored In a separate paper). Our assumptions are the

are with the Department of Geography, Boston University, Boston, MA 022%@”0Win9-

Index Terms—AVHRR, interannual variability, NDVI, path-
finder data, satellite drift.

USA (e-mail: kaufmann@bu.edu). 1) Most of the artificial signals caused by calibration resid-
C. J. Tucker is with the Biospheric Sciences Branch, Code 923, NASA God- s h b d by th librati hod d

dard Space Flight Center, Greenbelt, MD 20771 USA. uals have been removed by the calibration methods use
Publisher Item Identifier S 0196-2892(00)07154-0. to process this dataset.

0196-2892/00$10.00 © 2000 IEEE



KAUFMANN et al: EFFECT OF ORBITAL DRIFT AND SENSOR CHANGES ON THE TIME SERIES OF AVHRR VEGETATION INDEX DATA 2585

2) Major AOD variations due to volcanic eruptions onlyThat is, photon interactions with optically active elements
cause significant measurement errors within two retf the atmosphere inside the laye<0 » < H are ignored.
atively short periods compared with our whole studyhe radiation field within the layer can be described by the

period. three-dimensional (3-D) transport equation [16], [17]
3) Residual atmospheric effects were minimized by an-
alyzing the maximum NDVI values within a ten-day Q- VIN(r, Q) + o(r, QI\(r, Q)
|nterva| . . . ) :/ 0_57)\(7,7 Q/ . (2)_[)\(7,7 Q/) dQ/ (l)
Based on such assumptions, the major signals of changes in ar

reflectances and NDVI are related to changes in SZA, if arpi'ere I, is the monochromatic radiance which depends on
This analysis is described in five sections. In Section II, we de-~" ' ~* . N .
Y velength), locationr, and direction€). The unit vector2

rive the effect of changes in SZA on channel reflectances a}i@ex ressed in soherical coordinates with respect e
NDVI from equations of radiative transfer in vegetation mediéa. i pand L apnd are its polar anale and pa fn ﬂ;
Starting from first principles, it is rigorously shown that the XIS, cos T H ¢ s p 9 Zimuta.

NDVI of a vegetated surface is a function of the maximum poés- the total interaction cross section, W.h'Ch does.not depend
wavelength, andrs , is the differential scattering cross

itive eigenvalue of the radiative transfer equation.Asensitivigﬁ tion. A precise descriotion of th variabl n be found
analysis of this relation is performed to determine the effect petion. A precise description of these variables can be fou

SZA changes on NDVI. Itis shown that NDVI is minimally sen" [}j%]’ t[el(?]. In the follwing, the formulation of Myneni [19]
sitive to SZA changes and that this sensitivity decreases as 1 pted. . .
he transfer equation (1) is a statement of energy conserva-

area increases. The third section describes statistical methods . the oh The phvsical . fth f
used to analyze the relationship between SZA and channeltllgn In the phase space. 1he physical meaning ol the various

flectances or NDVI. It is shown that the use of ordinary Iea% rms in (1) is that the first term characterizes the change in ra-

squares (OLS) can generate spurious regressions becaus i 2 atr, the other terms ?hOW whethert_he (_:hanges ta_ke
lr?ce at the expense of absorption and scattering in the medium

distribution of test statistics in regression models is based .
the assumption that time series are stationary, that is, they Scond term) and at the expense of the scattering from the other
' ' E5r_ections (third term).

not contain a stochastic trend. To avoid confusion about the re . . .
The magnitude of scattering by elements of the vegetation

tion between SZA and NDVI that may be implied by a spurious is d ibed using the hemisoherical leaf albed
regression, the notion of cointegration is used to analyze the FENOPY IS described using the hemispherical leat albedo

lation between SZA and AVHRR data. The results of this empir- )
ical analysis are described in Section IV, and they are consistent / osa(r ¥ — Q) dQ
with the conclusion of Section Il. NDVI is not related to SZA wa(r, Q) = =% o (r ) (2)

in a statistically significant manner except for biomes with rela-
tively low leaf area. From the theoretical and empirical analysian individual leaf is assumed to reflect and transmit the inter-
we conclude in Section V that the time series of NDVI genetepted energy in a cosine distribution about the leaf normal. In
ated from the AVHRR Pathfinder land data set are not contarhis case, the leaf albedo, does not depend on the angular
inated by trends introduced from changes in solar zenith angtriable(£2) and the differential scattering cross sectig, is

due to orbital decay and changes in satellites (NOAA-7, 9, 1§ .symmetrical function with respect to angular variables [20].
As such, the NDVI data can be used to analyze interannual vatiis assumed that the leaf albedo is independent of the spatial

ability of global vegetation activity. variabler. These assumptions are not essential to the following
analysis. The typical spectral variation of leaf albedo is defined
[I. THEORETICAL ANALYSIS by three distinct spectral regions [21], i.e., visible (0.4—nY),

. near-infrared (0.7-1.3pm), and mid-infrared (1.35-2.bm).
A. Angular Variation of the NDVI In general, a green leaf absorbs 90-95% of solar radiation in the
Data for the spectral reflectance recorded by satellite sensgigsible region but only 5-10% in the near-infrared. Leaf albedo
usually are compressed into vegetation indices. The literatuiehe mid-infrared region is usually smaller than in the near-in-
describes more than a dozen such indices and these correfi@lieed and is controlled by internal leaf structure and absorption
well with vegetation amount [8], the fraction of absorbed phay leaf water [22], [23]. Characteristic water absorption bands
tosynthetically active radiation [9], unstressed vegetation cosire at 1.43, 1.95, and 2.2n. These properties are inferred from
ductance and photosynthetic capacity [10], and seasonal atare spectral behavior of a green, healthy leaf and are quite stable
spheric carbon dioxide variations [11]. These correlations agghough the magnitude of reflectance and transmittance may
also supported by theoretical investigations [12]-[15]. This segary with leaf age and among species. Fig. 1 demonstrates a typ-
tion expands these investigations to analyze the relationship ked spectral variation of leaf albedo for broadleaf forests. Leaf
tween solar zenith angle (SZA) and NDVI from first principlesspectral data were obtained from a variety of sources of filed
1) Radiative  Transfer ~ Problem  for  Vegetationrmeasurements on different broadleaf trees. The mean and vari-
Media: Consider a vegetation canopy in the layer @nce spectra were calculated from a large number of samples.
< z < H.Thetopz = 0 and bottom = H surfaces formits  |n this study, the normalized differential scattering cross sec-
upper and lower boundaries. The position vectodenotes tion is used
the Cartesian tripleta, v, z) with its origin at the top of the
canopy. Assume that photons interact with phytoelements only. waga(r, ¥ — Q) = o5 A (r, ' — Q). 3)
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! where 3 and « are near-infrared and red spectral wavebands,

z % Wﬂ%ﬂ respectively.

5 % ]} We investigate the relation between solar zenith angle (SZA)
o7 H&H}L changes and NDVI using operator theory [25], [26]. Therefore,
oer % 1 we introduce the differential and integralS operators as

ical albedo (di

. d_[)\(Tfy + 59, Q)

ol | #}W{

% LIy =Q-VI\+o(r,Q)I(r,Q)
Y :

03
: :f !‘&}ﬁj ]Hﬁd % dé +0(7’W+£Q,Q)I)\(TA,+£Q,Q)
oo | ©
400 visible 700 near-infrared v;s;?ength‘ . mid-infrared 2500 SI)\ _ / g(T, Q/ _ Q)I)\(T, Q/) dQ/ (10)
4

Fig. 1. Mean leaf hemispherical albedo of broadleaf forests and its stand

rd . .
deviation as a function of wavelength. fn (9), we represent the spatial poinasr = r., 4 ££2. Here,

the point-,, belongs to the upper boundarlfis directed down
It follows from (2) that the integral ofi over 2 does not de- (-6~ < 0)andto the lower boundary otherwigedenotes the

pend on the wavelengthand is equal to total interaction crosglistance between the poinand the boundary,(= 0 or> = H)
sections(r, '), and that the functiop, is a symmetrical func- along the direction-Q2. To describe the boundary condition (6),

tion with respect to angular variables. The coefficigntan be & Scattering operator is defined on the lower boundasy H
assumed to be independent of wavelength [24]. Substituting [3Y]: [28] as

in (1) results in 27 0
RHI)\(TH,Q) =71 / d(/)/ / dul
0 —1

YA QN (e @), p > 0. (12)

Q- VIL(r, Q)+ o(r, Q) I\(r, Q)

= wy / g(r, Y — DI\(r, Q) dSY. 4)
i Using this notation, the boundary value problem (4)—(6) can be
Let a parallel beam of unit intensity be incident on the uppP@kpressed as
boundary. At the canopy bottom= H, the fraction of radiation
that is reflected back into the canopy by the ground is given by LIy =w)SI\, I\(ro,2) =6(Q—Q), p <O
the_ b|d|recfuon'al distribution funguom,,A(Q , ) of thg ground. L(ri, Q) = Ry L, > 0. (12)
This case is given by the following boundary conditions:
] B The solution/,, of (12) is represented by the sum of two com-
Ix(ro, §2) = 6(& — %?T)’ “0< 0 ®) ponents, viz./\ = I o + @A, Wherel, o is the incident direct
Lrg, Q) =7t / e’ / ! radiation that has not undergone interactions in the canopy, and
’ 0 1 v Is the intensity of photons scattered one or more times in the
Yo (S, DN In(ru, ), pw > 0. (6) canopy (the diffuse component). Becausg= 0 for the up-

ward directions, the diffuse component must be specified to
HereQ2, = (10, ¢o) is the direction of the solar parallel beameyauate the BRDF (7), i.e.,

o = cos(fp), b0, and ¢, are solar polar angle and azimuth
angle.§ is the Dirac delta function, ang andr; denote points i _ A{ealro, QD))o
s . . B)\(H),Q(),Q) = (13)
on the upper and lower boundaries, respectively. The solution | eo]
of the boundary value problem, expressed by (4)—(6), describes ) _
the radiation field in a vegetation canopy. Using a standard.technlque [28], the foIIowmg boundary value
The bidirectional reflectance distribution function (BRDF)Problem for the diffuse component can be derived:
By, at the spatial point, is defined as the ratio of the mean o ) o .
radiance leaving the top of the plant canofi(ro, 2)}o, 1t > Loy =orSoxt ol ealro, ) =0, p < 0;
0, and the incident radiant energy, i.e., ea(rm, ) = Rupx+qx, p>0 (14)
INGRY where
B)\(TOaQOaQ) = < )\( 0 )>0 (7)
|20l
F(r, ) =g(r, Q0 — 0Q(r)
In the above, the angle brackg}, denotes the mean over the (Q) = ol (R0, Q) Q) (15)
pixel or a horizontal area of intere$t,| represents the incident 32 = [Ho]78, 24350, H-

radiation energy, becaudg(r,{2) in (4) is normalized by the The pronability density function(g) that a photon in the beam

incident radiation. The normalized difference vegetation indej gjrect solar radiation will arrive alongS, without suffering
(NDVI) is the difference between near-infrared and red BRDF'$ giision [19] and [29], can be expressed as

divided by their sum

£
NDVI = % ®) Q(r) = exp <— /0 o(r — Q0. Qo) d£’> . (16)
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The functionsl” andgy depend on the SZA and determine théblack soil problem.” Results presented in this subsection are re-

effect of changes in SZA on NDVI. quired to extend our analysis to the general case of a reflecting
2) Eigenvalues of the Transport Equatiofip determine the soil below the vegetation. We use a standard technique devel-

effect of changes in SZA on NDVI, a sensitivity analysis on theped in mathematical transport theory [26]-[28] as well as the

relation between NDVI and the maximum positive eigenvalugsult mentioned in the previous section.

of the transport equation is performed. By definition, the eigen- The solution of the transport equation (14) can be expanded

value of the transport equation is a numbesuch that there in Neumann series [27], [28] and [32] as

exists a functionp that satisfies
oxn=waf +E3Tf+ AT f +wsT3f+ -+ (22)

e V¢(~7’Q) oln el o) whereT = LS, f = L~'F are wavelength independent
= / o\ (1, Q= Q)o(r, Q) d (17)  functions. Substituting (22) into (8) and accounting for (13), we
i obtain
with vacuum boundary conditions

NDVI
2 2
P(ro, Q) = 0(j < 0), (ri, Q) =0(u > 0). (18) wall —6)f +w(1 = 6*)Tf
_ AW - w1 - 6T f -
The functiong(r, §2) is the eigenvector corresponding to the N wa(l+6)f + wé(l +6)Tf
given eigenvalue,. The set of eigenvalueg,,k = 0,1,2,--- FWi A+ )P f+wi(1+ 09T f +--- |,
and eigenvectorg,(r, 2),k = 0,1, 2, - - - of the transport equa- (23)

tion is a discrete set [26]. The transport equation has a unique

positive eigenvalue that corresponds to a positive eigenvecktered is the ratio between leaf albedos at red and near-infrared

[26]. This eigenvalue is greater than the absolute magnitudesagfvelengths, i.e§ = w,/ws. Note that a typical value of

the remaining eigenvalues. It provides information intrinsic tearies by about 0.1 ( Fig. 1). This allows us to negkttfor

the medium (vegetation canopy) and is independent of illumi- > 2 in (23), which means we neglect the multiple scattering

nation geometry. at red spectral band while accounting for multiple scattering ra-
Methods developed in operator theory can be used to estimdi&tion at near infrared band. Under these conditions, (23) can

the maximum positive eigenvalue. In particular, Krasnoselskiitse reduced to a rational function whose variation with SZA re-

[30] results on positive operators will be used in the followingsults from variation ofug(1 & @) f. Therefore, the following

Let 7" be a positive operator, and letoe a positive function for analysis begins with the justification of this technique.

which the following inequality holds: Consider the following functions:

au <Tu <hu (19) A X 907 Z w ’Tn_lf, (24)
wherea; andb; are some positive constants. Under some gen-
eral conditions [30], the sequences rQ,Q) = Z WIS (25)

il T Ty _
= j/inf o b= y/sup—— (20) These expressions can be used to represent NDVI as
converge to the maximum eigenvalyéZ’) of the operatofl’ NDVI = wa(1—6)f+ 00— A (26)
from below and above w@(l +60)f + 2o+ A
Neglecting the term in (26), the following approximation for
Apn S 7/](T) S bn7 n= 17 27 37 T (21) ND%/' reSL?ltS: ( ) g.app

Knyazikhin [31] discusses conditions under which this result we(l—0)f + <I>0

NDVI, = 27)

is applicable to the transport equation. The next section shows wa(1+60)f + @

that the NDVI for a sufficiently dense canopy is a function of

the maximum eigenvalue of the operafbr= L~1S. It fol- The accuracy of this approximation (27) can be investigated by
lows from (19) and (20) that the maximum positive eigenvald@e differencédNDVI = NDVI, - NDVI. Becauseps = wsf +
equation is independent of illumination geometry. Therefor&o

exploring its relation to NDVI provides the proper analysis to SNDVI = 2A 03
address SZA effects. T (s + wabf) (s +wabf + A)
. . ©3 A 1
B. Dependence of NDVI on SZA in the Case of An Absorbing < 2AW =2— ———. (28)
Ground vaT s ve <1 i 9@)
¥8

Consider the simplest case: reflectance of the ground below
the vegetation is zero, that ig, A(©2',Q) =0 (Ry = 0,gx» = Thus, the accuracy of the approximation (27) is proportional to
0). The problem of radiative transfer in this case is termed thg/¢ .
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) . . Fig. 3. DifferencedNDVI between exactly evaluated NDVI and its approxi-
O 1 2 3 4 5 6 7 8 9 10 mation as a function of the ratibbetween leaf albedos at red and near-infrared
LAI wavelengths fok; = 0.1, 0.4, and 0.9.

Fig. 2. Coefficientp, which characterizes canopy structure as a function of

leaf area index (LAI). 1
The operatofl’ = L~1S is positive [31]. The positivity of 095 1
the operatofl’ and equationps = wglys + wgf imply the
following inequalities: 09 T
waf L g, wslvs < ke (29) g 087
g
where 0.8
T
Kg = sup WeL¥bo _ sup <1 — —w’8f> <1 (30) 075 T
rQ ©s ,Q ¥g
. . , 0.7 }
The supremum in (30) is taken over alland 2, for which '
@a(r, ) # 0. This involves the validity of the following trans- 0.65 ’ ) ) , ,
formations: o 0.2 0.4 0.6 0.8 1
n
wg(weT)" f <(waT)"ps < (waT)" HwsTpps) ‘ o o
<rg (wyaT)n—l%a << ’ig"@,@' (31) Fig. 4. Range of variation in NDVI caused by variation in canopy structure

and sun-view geometry for different values of the ratibetween leaf albedos
at red and near-infrared spectral bands.

These inequalities allow estimation of the functitiras

00 6NDVI is less than 0.02 at the typical value éf(about 0.1)
Alr,Q,90,0) = > 0" ws(wsT)" " f even at the largest; = 0.9. Compared with the range of NDVI

n=2 values in Fig. 4, one can see that (27) approximates NDVI ac-

< i gl — 6214 32 curately. Therefore, (27) is used to evaluate NDVI.

= BB T T T, (32) " Thus, variations in the NDVI are caused by variation in the

=2 ' function f, which is the radiance of photons scattered once.

Substituting this inequality in (28) and accounting for the in[herefore, the range of variation in NDVI depends on the pro-
equalityws f/¢s = 1 — wsTes/s > 1 — Kg, one obtains  POrtions ofd, and. To estimate this range, the following func-

tion is introduced:

92113 1 (33)
L= g 14001 —rg)l” n(r, 2, Q) = w,@zp’@. (34)

SNDVI < 2

It follows from (19) and (20) that the coefficient; is an es-
timate of the maximal positive eigenvalue of the operatgl” It follows from (22), (25), and (34) thaby = wsTps = nvg.
(spectral radius of the operatopT). This spectral radius can The equation 1= wsTes/ps + wsf/ps allows ws f to be
be estimated assp [32]. Herep = 1—exp(—K) whereK isa expressed asgf = (1 — n)pg. Substituting®o andwg f in
wavelength independent constant. Thuis,a coefficient which (27), we obtain
depends on canopy structure only. Fig. 2 shows the coefficient
p as a function of leaf area index (LAI). Fig. 3 demonstrates
variation of§NDVI with respect tof for different values of:g.

NDVI, = (1_9)(1_”)+Z. (35)

—~
)
~—
—~
—
[
=
o
_|_



KAUFMANN et al: EFFECT OF ORBITAL DRIFT AND SENSOR CHANGES ON THE TIME SERIES OF AVHRR VEGETATION INDEX DATA 2589

1 that is,n varies about the spectral radiugp. If one constrains
0.9 1 variations ofr and§2 by spatial points on the upper boundary

spectively, in which supremum and infinum are taken over all
on the upper canopy boundary and view directions. Fig. 5 also
shows the uppets(s o) and lower {4 ¢) bounds as a function of
LAl for different values of SZA. The upper boung; o varies
about the spectral radiusgp, being only slightly sensitive to
SZA. The sensitivity of the lower boundary o to SZA is more
discernable. However, this does not result in significant varia-
tion in NDVI. For example, the maximum ranges[o = 0.4,
kg0 = 0.65] of possible variation im, which corresponds to
the low sun position (SZA= 60°) causes NDVI values to vary
in the interval [0.88, 0.93] i# = 0.1, and in [0.78, 0.86] il =
0.2 (Fig. 4). It should also be noted that valueg &r the zenith
view direction are close to the upper boungly. Thus, in the
04 1 P VN case of a vegetation canopy with a dark background, variations
’ T in NDVI are caused mainly by, which describes the optical
properties of an individual leaf, and by the parametexhich
describes canopy structure. Both parameters are independent of
0 T T T T T T T SZA and view angle. Therefore, we conclude that changes in
0 1 2 3 4 5 6 7 8 SZA have no appreciable effect on NDVI.

Leaf area index

®) C. NDVI Variations in the Case of a Reflective Ground

0.8 : o :
e -~ and view directions (that determines measured NDVI values),
'N N s T T L - - . . . )
506 O eemeenon 299000990000 the ranggrs o, 13,0] Of variation ofn pecomes essentially nar

5 0.5 4 Vao rower. Herexg o andyg o are determined by (30) and (36), re-
£

2

!

Leaf area index

(a)

0.6 T356555855585585655855580

Bounds of variation
o
i
1

To parameterize the contribution of the surface underneath the
Fig. 5. Upper and lower bounds of variations ﬁ(fr, Q) as a function of canopy (50” and/or understory) to the canopy radiation regime,

LAl for different values of (a) SZA= 15 and (b) SZA= 60. Here,x;s and fecti dreflect is introd d V115
v are maximum and minimum of(r,€2), taken over all possible spatial an efleclive ground retlectance Is introduced, name y[ ]

points r and directions2. ks, and vz, are maximum and minimum of

n(r,€2) over pointsr on the upper canopy boundary and upward directions / ot . / /
Q. wep is the maximum positive eigenvalue (spectral radius) of the transport 1 Joro 2t %’)‘(Q ’Q)““L H |I)‘(7 w42 ) afd dQ2
equation. Values ofy(r, 2) at the upper canopy boundary and in the zenith per =

view direction are depicted witk>. 7r / W(Q/)|N/|I)\(TH7 Q/) Ay
2w —

It follows from (30) that 0< 13 < 1 £ kg £ 1. That is, the (37)

range of all possible variations indoes not exceed the intervalrpe function wis a wavelength-independent configurable func-

[0, 1]. Here tion that will be specified later in this section. Note that the effec-

inf tive ground reflectance depends on the solution of the boundary
vg = 7(r,L, Qo) (36) value problem (4)—(6). However, it follows from the definition

’ that the variation of.g satisfies the following inequality:

where infinum is taken over all ands2, for which ¢g(r, Q) # _ 1 )

0. The relation between NDVI angl for different values o, L o / Yo, (8, Q)| p] dEY < pesi(7s)

shown in Fig. 4, indicates that the range of variation in the NDVI 2{“’

is determined by, which varies about 0.1 (see Fig. 1) and < max ——— / Y A(, )|l dQ. (38)

ezr— aw(Q) Jory

Note that variations im result from variations in sun-view ge-
ometry and canopy structure. From (35), it follows that NDVihat is, the range of variations depends on the integrated bidirec-
can never be less thdh—£)/(1+6) in the case of a completely tional factory, » of the ground surface only. Therefogey; can
absorbing soil. The condition ND (1 —6)/(1+6) indicates  he taken as a parameter that characterizes ground reflectivity.
that the case when the ground below the vegetation contributesg gccount for the anisotropy of the ground surface, an effec-

to the canopy leaving radiation. tive ground anisotropy, is used
Fig. 5 demonstrates the range;| ] of variation ofr; as a

function of LAI for different values of the SZA. It follows from sx(r, ) = 1 1
(30) and (36) that the uppey and lowern/s bounds result from pet(A)
variation inr and(?; that is, at any spatial poimtin the canopy p / ) p p
and in any directiof2 the values of)(r, ) will never be out of S WA Y TN, ) A

, > 0. (39)

the rangédr/s, x g]. This interval estimates the spectral radius of

the operator,57" from above and from below [31], [33], [47], /zﬁ_ W) A (e, ) ¥
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Consider the case when the bidirectional distribution functigarocess is controlled by the square of canopy transmittance (42),
can be factorized ag (€', 2) = 11 A (2 )v2,A(Q2, Qo). Taking  trs aJ/r(ro, ). Thatis, the greater its value, the higher the con-
tribution of the ground to the canopy leaving radiation and, as a

w(Y) = '71%(9/)7 PLA= 1 / A Q)| dSY consequence, the greater the sensitivity of NDVI to SZA.
PL,A ' 27— ' 7
1
p2.(Q) = = / Yo A (2, Qo) || d2 (40) [ll. EMPIRICAL ANALYSIS
™ ™ . . . A . .
2 In this section, the theoretical formulation described above is
the following expressions for the effective ground reflectangested with the NOAA-NASA AVHRR Land Pathfinder data set
and anisotropy result: [1]. First, we describe the preprocessing and compilation of the
satellite data. Next, we describe the statistical techniques used
_ ) ~ 72,A(2,90)
pett = PLAP2A(Q0), SA (11, 2, Qo) = ————~.  (41) to analyze the data.
mp2 2 (Q0)

The integral ofi|sx(rs, 2,€2) overQ = 1. One can see thatA- Data Processing
the effective ground reflectance and anisotropy do not dependrhe Pathfinder AVHRR data set includes channel 1 re-
on the solution of the boundary value problem (4)—(6), whicectances (red band, 580-680 nm), channel 2 reflectances

can be expressed as [15] (near-infrared band, 725-1100 nm), and solar zenith angle from

) July 1981 to September 1994 at 8 km resolution (square pixels).

ox(r, Q) = ppsa(r.Q) + tBS,Apeﬂi,JA(r, Q). The data processing included improved navigation, intersatel-
1= per(A)js,n lite calibration, and partial correction for Rayleigh scattering.

(42)  correction for atmospheric effects requires information on
tmospheric gases, aerosols, clouds, and surface scattering

groperties. This information is not available, and therefore the

NDVI data were composited over a ten-day period. NDVI is

. calculated from channel 1 and channel 2 reflectances using
are radiance and downward flux at the surface level, resp

. . . §). NDVI is measured on a scale fros to 1. For vegetated
tively, generated by the anisotropic source (39) located at t . .

) - : surfaces, near-infrared reflectance is always greater than red
canopy bottom. The functiod, satisfies the equatiod, =

reflectance, therefore NDVI always is positive.

;;Aengi;;t{ g' li_cl:e;’t;]rsc Ies (tgg)r%%:tl (;e agtetl:zritae:oby %T)c:ttggs tlr?a{rhe AVHRR sensor covers the global land surface daily. The
P . : . by . %uality of these data varies daily due to changes in atmospheric
have not undergone any interactions in the canopy. It satisfies_ .". : :
. o conditions (e.g. clouds and stratospheric aerosols). The daily
the equatior’..J; = 0 and the boundary conditiof(ro,$2) = . X .
0 < 0): Ju(ry, Q) = ) ( 0) NDVI data are composited over a ten-day period. Residual at-
< 0); Jo(ra, ) = sx(ra, §9) (u > 0). mospheric effects were minimized by analyzing only the max-

thfg;sagcc)J?;ﬁi%;gcégiiz;wvghfggrﬁ?:srsr:ittléagﬁrelsgnli;gfelearr?]to@lflm NDVI value within each ten-day interval [11] (which gen-
of radiation, i.e.£zs. ~ 0. The NDVI is evaluated by (35) rates 474 observations for the sample period). These data gen-

) - o o . .~/ _erally correspond to observations from near-nadir view direc-
and is minimally sensitive to variations in the SZA. This y P

is: o
._Tiop and clear atmosphere. Compositing the AVHRR data may
also the case when the surface underneath the canopy is %gﬁse retention of bad scan lines. However, there are very few

ficiently dark, i.e.,o.q ~ 0. Broadleaf forests are an exampI%ad scan lines. Furthermore, spatially averaging on the data, as

of such a situation. The second situation is characteristic ngscribed below, also helps to reduce the noise caused by these

sparse canopy, which transmits almost all incident radiation, "SIfects.

.tBSfA ~ 1, and scattering from green Ie_.\aves Is negligible. Tha To reduce the effects of bad scan lines and to compile the data
iS, 7s.a = 0, Ja(r,2) = salry, ). In this case, NDVI can be . . : . . )
calculated as in a way that is consistent with the biophysical parameters by

which SZA may affect the AVHRR data (leaf area), we process

Here,pps » is the solution of the black soil problem discusse
in the previous sectiortzs » is the downwelling flux at the
canopy bottom for the case of the black surfagg.and j; x

NDVI — pet(3)s3(rH, Q) — pesr()sa(rm, Q) the Pathfinder AVHRR data (NDVI, Channel 1, Channel 2, and
peit(3)s5 (T, Q) + pet () sa (1, Q) SZA) over the vegetated areas (pixels with positive NDVI) and
,5(Q0, Q) — 1.0(202) compile th_e_m by biqme using a global landcover map [34]. This

= 5(, Q) F (0, Q) (43)  map identifies 13 biomes (Table I).

The AVHRR data display a significant and relatively con-
i.e., the effect of changes in the SZA on NDVI is totally deterstant intrannual seasonality. This pattern is not relevant to the
mined by the anisotropy of bare soils. focus of this analysis (the effect of changes in solar zenith angle
In conclusion, this analysis indicates that NDVI is minimallyon interannual variability). Therefore, intrannual variability in

sensitive to changes in SZA when the vegetation canopy is suffie AVHRR and SZA time series is removed as follows. The
ciently dense or the surface underneath the canopy is sufficierdbta are deseasonalized by calculating anomalies from the mean
dark. This sensitivity is determined by canopy structure only andlue of the composites for each ten-day compositing period.
varies between 1 and — 6)/(1 + @) (Fig. 4). The sensitivity For example, to calculate NDVI anomalies in the first compos-
of NDVI to SZA may increase with decrease in green leaf aré®d period of August for broadleaf evergreen forests, we cal-
of the canopy and/or with increase in ground reflectivity. Thisulated the mean NDVI for broadleaf evergreen forests for the
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TABLE | TABLE 1l
BioME NO. AND BIOME TYPE OF A GLOBAL LANDCOVER MAP ORDINARY LEAST SQUARES (OLS) REGRESSIONRESULTS FOR
BY DEFRIESEt al.[34] (44)-(46)— TESTB =0

Biome No. Biome Type Biome Channel 1 Channel 2 NDVI
1 Evergreen Needleleaf Forests 1 8.20 8.79 -1.04
2 Evergreen Broadleaf Forests 2 2.46 -17.78 -2.36
3 Deciduous Needleleaf Forests 3 7.60 8.13 -1.56
4 Deciduous Broadleaf Forests 4 9.94 5.52 -1.16
5 Mixed Forests 5 8.19 8.72 -1.05
6 Woodlands 6 6.81 2.26 0.66
7 Wooded Grasslands/Shrubs 7 -2.34 0.04 4.41
8 Closed Bushlands or Shrublands g -8.92 -4.09 11.14
9 Open Shrublands 9 -6.40 -2.65 12.55
10 Grasses 10 7.67 9.79 5.58
11 Croplands 11 11.89 11.89 -0.19
12 Bare ' 12 6.83 4.18 8.51
13 Mosses and Lichens 13 13.19 13.50 -1.66
14 All biomes 14 8.43 538 0.77

Values that exceed the 0.05 threshold (]1.96]) are shown in bold

first ten days of August from 1981 through August 1994, sub-

tract this mean from each of the ten-day composited valuge biomes (Table Il). These results imply that there may be a
Monthly-averaged anomalies are generated from the ten-d&jation between SZA and NDVI.

composite anomalies (which generates 157 observations for th&Jsing OLS to estimate (44)—(46) is appealing because of its
sample period). Both the ten-day composite and monthly-g&implicity. But using OLS to estimate relations between time
eraged anomalies are used in the statistical analysis descriedes carries a significant danger. The distribution of test statis-

below. tics generated by OLS is based on the assumption that the data
are stationary. That is, they do not contain a stochastic trend. If
B. Statistical Methodology the independent and/or dependent variables in an OLS regres-

sion contain a stochastic trend, the regression residyaften

To validate the sensitivity of NDVI to changes in SZA im- . : . o2 .
. i 7 . ) . ill contain a stochastic trend. This violates the assumptions
plied by the physics of radiative transfer described in Section . L .

at underline OLS. Such a regression is known as a spurious

tmhgdAe\I/gRR data anomalies are used to estimate the fOIIOW"fr]ggression [35]. When evaluated against standard distributions,

the correlation coefficients artdstatistics for a spurious regres-
sion are likely to show that there is a significant relation between

Channell =ay + f, « SZA+ ey, (44) " ihe variables when in fact none exists. The possibility for a spu-
Channel = az + 2 * SZA + &2, (45)  rious regression clouds the interpretation of results generated by
NDVI = v + 3 % SZA + €3 (46) OLS.

To avoid spurious regressions, we use the notion of cointe-
in which Channel 1, Channel 2, and NDVI are derived from thgration to analyze the relation between solar zenith angle and
AVHRR Pathfinder data sets [1], SZA is the corresponding sollte AVHRR data. If the data for solar zenith angle contain a
zenith angleq andg are regression coefficients, and €2, and  stochastic trend, and if this trend “contaminates” channel 1 re-
g3 are normally distributed random error terms. These modélsctances, channel 2 reflectances, or NDVI, then SZA will coin-
can be estimated using a variety of statistical techniques, tegrate with the AVHRR data if the AVHRR data do not con-
cluding ordinary least squares (OLS). When using OLS, the ¢&in a separate stochastic trend(s) generated by the terrestrial
fect of changes in solar zenith angle on AVHRR data can Ibéota. Cointegration implies that there exists a linear combina-
evaluated with & statistic to test the null hypothesis that= tion of the variables that eliminates the stochastic trend in the
0. Rejecting the null hypothesis would indicate that there isdata [36]. The linear function(s) that eliminates the stochastic
statistically meaningful relation between solar zenith angle atr@nd is termed a cointegrating vector (CV). For variables that
the AVHRR data. Such a result would indicate that changesdnintegrate, standard inference theory can be used for further
solar zenith angle introduce a trend into the AVHRR data. hypothesis tests using distributions for cointegrating variables.

We use OLS to estimate (44)—(46) to evaluate the relation be-The methodology used to examine the relation among SZA
tween SZA and the ten-day composite AVHRR data describadd the AVHRR data is carried out in two steps. In the first
in the previous subsection. Estimating the relation between S&fep, we use statistical tests developed by Dickey and Fuller [37]
and channel 1 reflectance (model 1), SZA and channel 2 te-determine whether the data for solar zenith angle, channel
flectance (model 2) from this data set indicates that we rejeeflectances, and NDVI contain a stochastic trend. In the second
the null hypothesis that = O for nearly every biome (Table I1). step, we use the fullinformation likelihood procedure developed
These results imply that the data for channel 1 and channeby Johansen [38], [39] to examine the relation between SZA
reflectances are influenced by changes in SZA. There is less axd channel 1 reflectances, SZA and channel 2 reflectances, and
idence for a relation between SZA and NDVI (model 3). W8ZA and NDVI. We test two aspects of this relation. First, we
cannot reject the null hypothesis that= 0 for about half of ask if there a statistically meaningful relation between SZA and
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g 04 TABLE Il
-]
% 03 VALUES FOR THEDICKEY-FULLER TEST STATISTIC USED TO DETERMINE THE
£ TIME SERIESPROPERTIES OF THEAVHRR AND SZA DATA
£
E _0‘? Biome Channel 1 Channel 2 NDVI SZA
5 02 1 -5.33 -4.94 -3.29 -2.53
a _0'3 2 -3.49 -2.99 -3.80 -2.80
- 3 -5.06 -5.01 -6.68 -2.56
1 51 101 151 201 251 301 351 401 451 2 ~4.00 470 3.69 .68
Time B 5.65 -5.26 3.74 239
6 -2.99 -3.89 -3.31 -2.98
g 0.04 7 -3.71 -5.67 -3.06 2.71
% 008 8 -3.47 -5.05 267 2.87
- 9 -4.45 -5.09 -3.07 -2.69
g : 10 -5.26 -4.42 -3.18 -2.57
E 0.01 11 -4.04 -4.14 -3.94 -2.58
- 12 -5.58 -4.65 -5.32 246
“E’ 13 -5.17 -5.05 -4.63 -3.61
§ 001 14 -3.60 -3.80 -3.07 2.82
© 902 ; Values that exceed the 0.05 threshold (-3.42) are shown in bold
1 51 iy} 151 201 251 301 351 4 451
Time
< 003
g oo 2 reflectances, and NDVI aH0) or I (1). The model for the
g 0'01 Dickey-Fuller test is
g0
o 0 n
£ oo Ay, =+ §A 47
£° yt—a‘i‘/t‘f"Yyt—lZ i AYy 1 + €y (47)
© 002 - .
1 51 101 151 201 251 301 351 401 451 =1
oos wherey is the variable under investigation is the first dif-
004 ference operatot, is a linear time trend (which represents the
oo possible presence of a deterministic trend)g, v, andé; are
; 002 regression coefficients, angis a random error term. The ADF
et test evaluates the t-statistic fp{which is equal to the first order
008 autoregressive coefficient minus one) against a nonstandard dis-
o e e e tribution._The null hypothesis is th_at the_ series is at Ié@).
Time Under this null;y = 0. If we can reject this null hypothesis for

the undifferenced series, then that serie§®. If we can only
FLg- 6. | Glok;?lly averagﬁd an?maliffrls of deseasgnalizedfsolar zenithd angigect the null hypothesis for the differenced series, then that se-
(whore NDVI i positve) from the Pathfinder data set. There are otal of 434 154 (1)- The number of augmenting lagged dependent vari-
samples from July 1981 to September 1994. ables ) is selected using the Akaike information criterion [40].
The results of the ADF tests for the ten-day data set indicate
. . that the time series properties of SZA, channel 1 reflectances
the AVHRR data. Second, if there is one present, we ask whakigy channel 2 reflectances, and NDVI differ (Table 1II). The
the statistical ordering of this relation (do changes in SZA CAURR)F (est statistic generated from the levels of SZA fail to reject
changes in the AVHRR data or vice-versa). the null hypothesis (except for biome 13, lichens and mosses),
A cursory glance at the time series for SZA indicates thgjhich indicates that the SZA data contain a stochastic trend.
these data are not stationary (Fig. 6). Furthermore, this nofissts on the first difference of the SZA data reject the null hy-
stationarity does not appear to be caused by a determinigfighesis, which indicate that the SZA data &#). The results
trend. Rather, the data increase fairly steadily over three periog§.the AVHRR data are mixed. The ADF test statistic generated
which are defined by two sharp drops. These drops correspafgh the levels of channel 1 reflectances reject the null hypoth-
to changes in satellites (NOAA-7 to NOAA-9, and NOAA-9 taasis (except for biome 6, woodlands), which indicates that these
NOAA-11). As such, these changes have a permanent effectia are/(0). Similarly, the ADF test statistic generated from
subsequent values for SZA. This persistence implies that g |evels of channel 2 reflectances reject the null hypothesis
data for SZA contain a stochastic trend. (except for biome 2, evergreen broadleaf forests), which indi-
A stochastic trend is an integrated series of random variablestes that these data af). The ADF test statistic generated
Arandom walk in discrete time, which corresponds to Browniafom the levels of NDVI are mixed. The test statistic rejects the
motion in continuous time, is a simple example of a stochashgll hypothesis for seven of the biomes, and fails to reject the
trend. Stochastic trends are said to be integrated of order ongll hypothesis for the remaining seven biomes.
symbolized ag(1). This terminology indicates that differencing  The results in Table Il undermine conclusions about the re-
the series once yields a nonintegrated sef{@k An I(0) series |ation between SZA and the AVHRR data that are obtained by
is stationary, that s, it does not contain a stochastic or determising OLS. The NDVI data for about half of the biomes have a
istic trend. A deterministic trend is an increase or decrease iBt@chastic trend. For these biomes, itis not possible to determine
time series that is generated by the passage of time. whether the relation between NDVI and SZA indicated by OLS
We use the augmented Dickey-Fuller (ADF) test [37] to clagTable II) is spurious. For example, OLS indicates that there is
sify the time series for SZA, channel 1 reflectances, chanrekelation between SZA and NDVI in grasslands (biome 10).
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But the time series for both SZA and NDVI contain a stochasttbe nonstationary variables, which also are stationary, and sta-

trend and therefore, it is not possible to determine whether ttienary linear combinations of the nonstationary variables, that

relation between these variables for grasslands introducedidythe cointegrating relations.

OLS is statistically meaningful or is spurious. If there are one or more cointegrating relations, the ECM can
For other biomes, the data for SZA contain a stochastic trebd reformulated as follows:

while the AVHRR data for NDVI (and channel 1 and channel

2 reflectances) do not. For example, the NDVI time series for y,_1 = af'[1,t,9,_] (50)

biome 7 (wooded grasslands and shrubs) ), while the

SZAtime series i9(1). These differences are critical because ithe terma’ [1,t,%,_,] indicates that a constant and/or deter-
is not possible for ad(1) variable (SZA) to be related directly ministic trend may be included in the cointegrating relatjéh.
to an/(0) variable (most of the channel 1 reflectances, channglthe matrix of cointegrating vectors, ands a matrix of co-
2 reflectances and about half of the NDVI data). Conclusiorsficients that indicates how each cointegrating relation affects
about the lack of a statistically meaningful relation may be preach dependent variable. The significance of coefficients in the
mature because the augmented Dickey-Fuller and other testgfpmatrix can be used to infer the statistical ordering in the rela-
stochastic trends lack power. These tests tend to reject the figh between variables in the cointegrating relation. The number
too often when the true data generating process is a random Watllcointegrating vectors, the variables that make-up a cointe-
with noise, and the noise is large compared to the signal [4§fating vector, the coefficients associated with these variables,
[42]. The lower the SNR, the higher the probability of a type 4nd the relation between an ECM and the dependent variables,
error (i.e., incorrect rejection of the null of a stochastic trenddd| can be evaluated using statistics generated by the estimation
In a finite sample, reducing the SNR increases the probabilifyocess.
that the test will indicate that a variable is trend stationary (that\we specify the VECM (49) to estimate the relation between
is, a typel error [41]). This conclusion is confirmed by MonteszA and channel 1 reflectances (model 1), SZA and channel
Carlo simulations [43]-[45]. 2 reflectances (model 2), and SZA and NDVI (model 3). We

Cursory examination of the data indicate that the signal tge no lagsX = 1) on the assumption that measurement er-
noise ratio is low (Fig. 6). Fluctuations in channel 1 reflectancegrs caused by changes in SZA appear in the current measure
channel 2 reflectances, and NDVI are large relative to whatevgitchannel 1 reflectances, channel 2 reflectances, and NDVI. A
signal may exist. This noise is damped in the monthly-averaggg CM is estimated for each of the 13 biomes and global data
data set (results not shown). Nonetheless, the results of the ABfome 14). This implies a total of 42 VECM's.
change only slightly. Reflectances for channel 1 and channel Z=or each VECM, we determine the number of cointegrating
generally ard (0), while the NDVI for about half of the biomes vectors, that is, the number of columnsghusing the;;ace
is I(1). and ). statistics [38], [39]. The\i:ac. Statistic tests the null

To evaluate whether the AVHRR data cointegrate (sharengpothesis that the number of cointegrating vectors is less than
stochastic trend) with SZA, we use the full information likeor equal tor against a general alternative that the number of
lihood procedure developed by Johansen [38] and Johansen @hiflitegrating vectors is greater thanThe A, Statistic tests
Juselius [39] to examine the relation between SZA and chantigé null hypothesis that the number of cointegrating vectors is
1 reflectances, SZA and channel 2 reflectances, and SZA aqghinst the specific alternative of+ 1 cointegrating vectors.
NDVI. The procedures to estimate cointegrating vectors are de-The number of cointegrating vectors is used to determine in
rived from a vector autoregression (VAR) in levels, which capart the presence of a relation between SZA and channel 1,
be represented as channel 2, or NDVI. If there is no relation between SZA and

- the AVHRR data, thé\;;.cc and .« Statistics will not allow

U= A+ oH Ayen b ptdttdditer (48) 540 reject the null hypothesis that there are zero cointegrating

in which y is a vector ofp variables whose behavior is bein vectors. Alternatively, the lack of at least one cointegrating re-
modeled}s is the number of lags, thd’s and¢ are matrices of ation could indicate that SZA and the AVHRR data share a sto-

regression coefficientg, ands are a vector of constantd, are chastic trend, but no cointegrating relation is present because the
nonintegrated exogenous variables, apds a vector of error AVHRR data contain a stochastic trend that originates from the
terms, each of which is normally independently and identical rrestrial biota that is not present in the data for SZA. Rejecting

distributed [46]4, is a subset of, so that (48) can be a part ofthis null hypothesis would indicate that there are one or more
a larger system of equations. cointegrating vectors. This result also signals two possibilities:

To test for cointegrating relations among variableg and to 1) there are one (or more) linear combinations of SZA and the

estimate the coefficients of the cointegrating vectors, the VAR/HRR data that are stationary, or 2) the AVHRR and/or SZA
is reformulated as a vector error correction model (vECM) data arel(0). The first possibility implies that there is a statis-
tically meaningful relation between SZA and the AVHRR data.

Ay =T1Ay 1+ + T 1A% gy The second possibility may imply that there is no relation. By
+1y—1 + pAdy +pp+ ey (49) definition, there is one cointegrating vector for each stationary
variable iny. So if either the SZA or AVHRR data ai€0), that
where A is the first difference operator. Equation (49) spectime series alone could make up a cointegrating relation.
fies the first difference of thé(1) variables, which is stationary, To distinguish between these two possibilities, we use exclu-
as a function of linear lagged values of the first difference afion tests to evaluate restrictions @that eliminate SZA or the
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AVHRR variable from the cointegrating vector. Ifthere isa single TABLE IV

cointegrating vector, and the exclusion tests allow us to reject re- LAMBDA STATISTICS FORCHOOSING THERANK OF I
strictions that eliminate the SZA and the AVHRR variable from  —ggmeTie T crvca vaie YRR o3 oaa3
the cointegrating relation, both variables are needed to form tt Amax | Atrace | Amax | Mrace | Amax | Mrace | Amax | Arace

14.07 1541 | 40.24 | 40.25 | 34.81 | 34.83 | 57.29 | 57.29
3.76 3.76 0.02 0.02 0.01 0.01 0.01 0.01
14.07 1541 | 76.24 | 76.88 | 73.14 | 73.89 | 39.88 | 40.38
3.76 3.76 0.65 0.65 0.75 0.75 0.50 0.50
14.07 1541 | 89.65 | 90.84 | 87.92 | 89.17 | 77.77 | 79.04
3.76 3.76 1.19 1.19 1.25 1.25 1.28 1.28
14.07 1541 | 7640 | 76.81 | 56.23 | 56.62 | 50.67 | 51.03
3.76 3.76 0.41 0.41 0.39 0.39 0.36 0.36
14.07 1541 | 41.93 | 41.98 | 37.61 | 37.66 | 67.83 | 67.84
3.76 3.76 0.05 0.05 0.05 0.05 0.01 0.01
14.07 1541 | 7645 | 77.78 | 54.58 | 56.00 | 5247 | 53.65
3.76 3.76 1.33 1.33 1.42 1.42 1.18 118
14.07 15.4]1 | 108.67 [ 109.29 | 73.44 | 74.36 | 42.96 | 43.37
3.76 3.76 0.62 0.62 0.91 0.91 0.40 0.40
14.07 1541 | 98.92 | 99.74 | 73.93 | 75.01 | 42.19 | 42.69
3.76 3.76 0.82 0.82 1.08 1.08 0.51 0.51
14.07 1541 | 82.65 | 82.94 | 57.08 | 5745 | 28.78 | 28.88
3.76 3.76 0.29 0.29 037 0.37 0.10 0.10
14.07 1541 | 40.53 | 40.72 | 3341 | 33.62 | 29.12 | 29.22
3.76 3.76 0.20 0.20 0.21 0.21 0.10 0.10
14.07 1541 | 70.88 | 71.16 | 44.67 | 44.95 | 47.26 | 4748
3.76 3.76 0.27 0.27 0.28 0.28 0.22 0.22
14.07 1541 | 62.06 | 62.17 | 35.19 | 35.28 | 32.93 | 32.93
3.76 3.76 0.11 0.11 0.09 0.09 0.00 0.00
14.07 1541 | 5640 | 62.31 | 53.19 | 58.91 | 58.14 | 63.18
3.76 3.76 591 591 5.72 5.72 5.04 5.04
14.07 1541 | 56.33 | 56.78 | 31.76 | 32.26 | 30.56 | 30.68

cointegrating relation. This result would imply that there is a sta:
tistically meaningful (at a specified threshold for statistic signif-
icance,p < 0.05) relation between SZA and the AVHRR vari- 3
able. On the other hand, if there is a single cointegrating rele y
tion and we cannotrejectrestriction that eliminates either SZA o
the AVHRR variable from the cointegrating relation, this would
indicate that the cointegrating relation consists of a sid¢® 6
variable—the variable that cannot be eliminated from the coin 7
tegrating relation. In this case, there is no statistically significan
relation between SZA and the AVHRR variable.

If there is a relation between SZA and the AVHRR variable, —2
we can determine the statistical ordering of this relation from the 10
statistical significance of the elementsafThe elements of o
indicate whether a cointegrating relation affects (loads into) thi
equation for the first difference of SZA or the AVHRR variable.
A statistically significant value for the elementef(p < 0.05) 13
indicates that disequilibrium in the long run relation betweer -

Variab_les in the Co_integ ratlng relgtion aﬁe_CtS the ﬁrSt difference Values that exceed the3(i.7065 thres}i‘)?: (critigﬁsvalueso ;ixslen in(zl::egtable)o;eg show(;jig bold.Ol30
equation. If there is a cointegrating relation between SZA ani Ho: Null hypothesis for the number of cointegrating relations.

NDVI, we would expect that the element afthat loads this

cointegrating relation into the equation for the first difference of TABLE V

NDVI would be significant. That is, disequilibrium in the long TESTS (1) OF EXCLUSION RESTRICTIONS ON THECOINTEGRATING

=3
—lol=lo|=lol—|o|=lo|~lol~|c|—|o|=lc|—~|o|~lo|~|cl=|c|~|o

run relation between SZA and NDVI should affect the first dif- RELATIONS
ference of the NDVI time series. On the other hand, we would__

. . Biome Model 1 Model 2 Model 3
expect that the element of that loads the cointegrating rela- Channel 1 SZA Channel 2 SZA NDVI S7A
tion between SZA and NDVI into the first difference of the SZA ———22 e 2 AT 528 o

i 1 1 1fi i ili 1 i 3 87.95 6.48 86.19 7.48 76.11 0.01
equa}tlon would be insignificant. Disequilibrium in the ang run — % S8 s 8 T61L oo
relation between SZA and NDVI should not affect the first dif- > 457 538 758 520 GEL 0%
ference of the SZA time series. 7 108,01 Lis 72.26 022 YR 8.29

8 98.11 16.13 72.21 1.78 41.12 18.37
9 82.36 7.67 56.66 0.51 27.67 13.34
10 40.27 3.77 33.20 5.66 28.42 5.34
11 70.61 17.20 44.39 10.90 46.92 0.11
IV RESULTS 12 61.94 6.16 34.90 2.52 32.23 0.81
13 - - - - - -
Conclusions about the number of cointegrating relations i1 %= 55.85 8.30 3108 ERE] 3008 136

. . . . Val that exceed the 0.05 threshold (3.89) hown in bold
models 1-3 are similar. Both th&,... and \,... Statistics e

indicate that assigning a rank of zero are rejected strongly for
all biomes and all models (Table IV). This allows us to reject theelation is consistent with the analysis in Section Il, which indi-
possibility that SZA and the AVHRR variable share a stochastiates that channel 1 reflectances are functions of view and illu-
trend, but this cointegration cannot be detected because thi@ation geometry.
AVHRR data also contain a stochastic trend that is introducedFor these ten biomes, the nature of the relation between SZA
by the terrestrial biota (and therefore is not shared by the S&a&d channel 1 reflectances is indicated by the statistical signif-
data). Nearly all models have only one cointegrating relatioitance of the elements af. The statistical significance of the
Both the Ai;,ce and A, 4% Statistics indicate that assigniifja element ofa indicates that the cointegrating relations that in-
rank of 1 cannot be rejected for all models and biomes excepide SZA and channel 1 reflectances generally load into the
biome 13 (mosses and lichens). For this biome, the resultsesfuation for the first difference for channel 1 reflectances and
the Aiace aNd A a5 Statistics indicate that assignina rank generally do not load into the equation for the first difference
of less than 2 can be rejected. Together, these results imply tuatSZA (Table VI). This result is consistent with the physical
the variables in model 1, model 2, and model 3 for biomes otheotion that changes in SZA should affect channel 1 reflectances,
than mosses and lichens contain one cointegrating relation. but changes in channel 1 reflectances do not affect SZA.
Restrictions that eliminate channel 1 reflectances from theThe results of model 2 indicate a relation between SZA
single cointegrating relation are rejected strongly in all biomesd channel 2 reflectances, but this relation is present in
(Table V). There are ten biomes for which we can reject tHewer biomes than the relation between SZA and channel 1
restriction that eliminates SZA from the cointegrating relatioreflectances. For model 2, restrictions that eliminate channel 2
(Table V). For these ten biomes, there is a statistically meameflectances from the cointegrating relation are rejected strongly
ingful relation between SZA and channel 1 reflectances. Thisall biomes (Table V). Restrictions that eliminate SZA from
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TABLE VI
ELEMENTS OF @ USED TODETERMINE THE STATISTICAL ORDERING OF COINTEGRATING RELATIONS

Biome Model 1 Model 2 Model 3
Channel 1 SZA Order Channel 2 SZA Order NDVI SZA Order
1 -0.003 -0.001 SZA— -0.003 -0.001 SZA—> -0.007 0.001 N
(6.392) (1.726) CHI (5.999) (1.007) CH2 (7.587) (2.345)
2 -0.003 -0.001 - -0.002 -0.002 SZA— -0.007 -0.000 -
(9.082) (0.847) (8.422) (1.405) CH2 (6.425) (0.273)
3 -0.018 -0.001 SZAe> -0.017 -0.001 SZAG -0.011 0.001
(9.935) (2.937) CH1 9.822) (2.447) Ch2 9.141) (2.600)
4 -0.003 -0.001 SZA—> -0.002 -0.000 SZA— -0.005 0.001
(9.104) (0.905) CHI (1.723) (0.489) CH2 (7.312) (0.706)
5 -0.004 -0.001 SZA— -0.003 -0.001 SZA— -0.007 0.002
(6.538) (1.721) CHI (6.239) (1.143) CH2 (8.299) (3.328)
6 -0.003 -0.001 SZA— -0.002 -0.001 - -0.005 0.000
(9.109) (1.249) CHI1 (7.558) (1.344) (1.414) (0.029)
7 -0.002 -0.003 - -0.002 -0.003 - -0.004 0.001 SZA—>
(10.886) (2.774) (8.472) (3.084) (6.706) (0.628) NDVI
8 -0.003 -0.003 SZA©& -0.002 -0.003 - -0.003 0.002 SZA—
(10.256) (2.999) CHI1 (8.580) (2.719) (6.615) (1.431) NDVI
9 -0.002 -0.002 SZA& -0.002 -0.001 - -0.001 0.001 SZA—
(9.369) (2.021) CH1 (7.627) (1.539) (5.411) (1.334) NDVI
10 -0.002 -0.00 - -0.002 0.000 SZA—» -0.002 0.001 SZA~>
(6.495) (0.284) (5.865) (0.064) CH2 (5.458) (0.985) NDVI
11 -0.003 -0.001 SZA—> -0.002 -0.001 SZA— -0.004 0.001 -
(8.722) (1.506) CHI (6.844) (0.713) CH2 (7.022) (1.120)
12 -0.002 -0.001 SZA— -0.001 0.000 - -0.001 0.002
(8.089) (1.160) CHI (6.004) (0.328) (5.839) (1.812)
13 - - - - - - -
14 -0.002 -0.001 SZA— -0.001 -0.001 - -0.002 001
(7.701) (1.736) CHI1 (5.668) (0.893) (5.6) (1.0)

Values that exceed the 0.05 threshold (]1.96) are shown in bold, and t statistic in parenthesis

the cointegrating relation are rejected in seven biomes. Hmtween SZA and NDVI in wooded grassland/shrub, closed
these seven biomes, there is a statistically meaningful relatiomshlands, open shrublands, and bushes. None of these biomes
between SZA and channel 2 reflectances. Again, this relatioreige present in the northern latitudes to invalidate the result pub-
consistent with the analysis in Section Il, which indicates thédshed in Myneniet al.[2]. Each of these biomes has a relatively
channel 2 reflectances are functions of view and illuminatisparse canopy. A sparse canopy is one of the conditions under
geometry. Consistent with this result, the statistical significaneéhich the theoretical analysis indicates that there may be a re-
of the elements ok indicate that changes in SZA affect channdhtion between SZA and NDVI. Thus, the empirical analysis
2 reflectances, but changes in channel 2 reflectances genersilgports the potential for a relation between SZA and NDVI in
do not affect SZA (Table VI). biomes with spares canopies indicated by the analysis of radia-
The results for model 3 indicate that the relation between SZie transfer.
and NDVI is less prevalent than the relation between SZA andThe statistical significance of the elementsxof consistent
the channel reflectances. Exclusion tests indicate that we canwith the causal order between SZA and NDVI implied by
ject the restriction that eliminates NDVI from the cointegratintheory. For the four biomes in which there is a relation between
relation for each of the individual biomes and the global dat&8ZA and NDVI, the elements of that represent the effects
Tests indicate that we can reject restrictions that eliminate SOA disequilibrium in the relation between SZA and NDVI on
from only four of the individual biomes. For the remaining nin¢he first difference of NDVI is statistically significant. This
biomes and the global data, we cannot reject restrictions tliadicates that changes in the long run relation between SZA
eliminate SZA from the cointegrating relation. Together, thesand NDVI affects NDVI. Conversely, the elements ®@fthat
results indicate that there is no statistically meaningful relatioepresent the effect of this disequilibrium on the first difference
between SZA and NDVI for nine of the biomes and the globalf SZA are insignificant. This indicates that changes in SZA
data. Conversely, there is a statistically meaningful relation beause’ changes in NDVI, but changes in NDVI do not cause
tween SZA and NDVI for four biomes. The four biomes irchanges in SZA.
which there is a statistically meaningful relation between SZA We obtain similar results when we analyze the relation
and NDVI is slightly less than the six biomes indicated by thieetween SZA and monthly averaged AVHRR data (results not
models estimated using OLS. This implies that the relation behown for brevity). The same four biomes have a statistically
tween SZA and NDVI indicated by OLS for two biomes, evermeaningful relation between SZA and NDVI: wooded grass-
green broadleaf forests and bare ground, is spurious as defitedl/shrub, closed bushlands, open shrublands, and bushes.
by [35]. Similarly, the statistical significance of the elements cof
The four biomes for which there is a statistically meaningfuhdicate that changes in SZA cause changes in NDVI but
relation between SZA and NDVI are consistent with the thechanges in NDVI do cause changes in SZA. Together, these
retical analysis described in Section Il. The cointegration anaksults indicate that data frequency do not affect conclusions
ysis indicates that there is a statistically meaningful relatiabout the relation between SZA and NDVI.
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V. CONCLUSIONS [3]

The results of the empirical analysis of the AVHRR data are
consistent with the relation between SZA and the AVHRR datal4]
indicated by theory. Equations that describe the physics of radia-
tive transfer in a plant canopy imply that SZA will affect channel [5)
1 and channel 2 reflectances measured by the AVHRR. Consis-
tent with this result, using OLS to estimate model 1 and model g
2 indicate a strong relation between reflectances and SZA, re-
gardless of frequency and geographic region. These relations are
only slightly weaker when the variables in model 1 and model 2 7
are examined for cointegration using the full information max-
imum likelihood procedure developed by Johansen [39].

A physical interpretation of our results is that the NDVI dif-
ferences with changes in SZA are primarily a soil-induced effect
since they become greater with lighter colored soils and they ard®!
minimal with very dark soils [47]. In case of dense vegetation
canopies, which have high NDVI values, the influence of thef10]
soil-induced effect is minimal.

Equations that describe the physics of radiative transfer in a
plant canopy imply that the relation between SZA and NDVI[11]
should be relative weak. The strength depends on the reflecting
surface such that the effect of SZA on NDVI will decrease;
as leaf area in the canopy increases and the ground under the
canopy darkens. The empirical analysis indicates that these
conditions are satisfied in a limited number of biomes such™®
that there is a statistically meaningful relation between SZA
and NDVI in wooded grassland/shrub, closed bushlands, opdi?]
shrublands, and bushes. In other biomes, there is no statistically
meaningful evidence for a relation between SZA and NDVI.[15]
For these biomes, our results imply that the data for NDVI
are not contaminated by trends introduced by changes in SZA
due to orbital drift and changes in satellite. As such, data for
NDVI can be used to analyze interannual variability in the[16]
productivity of terrestrial ecosystems.

The presence of a cointegrating relation that includes NDVI
only seems to contradict arguments [2] regarding changes in7]
peak greenness and the length of the growing season. A cointe-
grating relation that includes NDVI only implies that these datzzls]
do not contain a stochastic trend. Without a stochastic trend,
there may be no signal for an elongation in the growing seaso®l
and an increase in peak greenness. But this seeming contradic-
tion can be resolved by looking at the data examined by [2]{20]
They argue for changes during the growing season only, but
this analysis looks for a stochastic trend shared by NDVI angyy;
SZA during the entire year. As such, this analysis cannot de-
tect a shared stochastic trend that carries over from one growing
season to the next. If such changes are real, such innovatiops,
may persist by affecting the amount of biomass that is available
at the next growing season. The stochastic trend that would r(i2-3]
sult from such a relation could be detected with the estimatio
techniques used in this analysis, but would require a differeng4]
specification. This specification is the focus of future efforts.

(8]
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